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ABSTRACT

The accurate experimental determination of dipolar-coupling constants for one-bond heteronuclear
dipolar couplings in solids is a key for the quantification of the amplitudes of motional processes. Aver-
aging of the dipolar coupling reports on motions on time scales up to the inverse of the coupling constant,
in our case tens of microseconds. Combining dipolar-coupling derived order parameters that characterize
the amplitudes of the motion with relaxation data leads to a more precise characterization of the dynam-
ical parameters and helps to disentangle the amplitudes and the time scales of the motional processes,
which impact relaxation rates in a highly correlated way. Here. we describe and characterize an improved
experimental protocol - based on REDOR - to measure these couplings in perdeuterated proteins with a
reduced sensitivity to experimental missettings. Because such effects are presently the dominant source
of systematic errors in experimental dipolar-coupling measurements, these compensated experiments
should help to significantly improve the precision of such data. A detailed comparison with other com-

monly used pulse sequences (T-MREV, phase-inverted CP, R183, and R18]) is provided.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Accurate measurements of one-bond dipolar couplings in solid-
state NMR are of great interest in the context of characterizing
backbone and side-chain dynamics in biological molecules [1-9].
The partial averaging of dipolar couplings gives information about
the amplitude of the motional processes from the fastest time
scales up to the time scale corresponding to the inverse of the cou-
pling strength, i.e., typically up to tens of microseconds. In the case
of isotropic motions, the amplitude is often expressed in terms of
an order parameter S which simply expresses the ratio of the mea-
sured dipolar-coupling anisotropy and the theoretical rigid-limit
value and, therefore, characterizes the scaling of the dipolar cou-
pling. Obviously, no information about the actual time scales can
be obtained from such measurements. Information about the time
scales is available from relaxation data that can be used to supple-
ment the information obtained from dipolar-coupling measure-
ments [6,7,9,10]. In principle, relaxation data measured at
different Bo-field strengths allow a separation of time scales and
motional amplitudes but due to the weak dependence of the relax-
ation-rate constants on the magnetic field strength such a determi-
nation is often not very precise for experimental data sets [10,11].
Dipolar couplings are, thus, a very useful complement to relaxation
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data, and are generally required if motional amplitudes and time
scales are to be analyzed quantitatively.

Heteronuclear dipolar couplings can generally be measured un-
der magic-angle spinning (MAS) conditions using recoupling se-
quences, where the evolution of an initial density operator
prepared to be proportional to Sy is observed during a recoupling
sequence. Preparation of this initial in-phase S, magnetization
can be achieved by cross polarization from protons using the dipo-
lar coupling or by an INEPT-type pulse scheme, based on the scalar
coupling. The general scheme for the latter approach of measuring
one-bond dipolar couplings is shown in Fig. 1 which uses two refo-
cused INEPT blocks [12,13] for polarization transfer from the I
spins to the S spins and back. Such an INEPT-transfer based ap-
proach is best suited for isotopically diluted spin systems where
most of the protons are replaced by deuterons because dephasing
of transverse magnetization in such samples is slow enough to al-
low efficient heteronuclear polarization transfer. It is often possible
to achieve either reprotonation of exchangeable proton sites by an
appropriate choice of the solvent, selective protonation of methyls
[14,15] or stochastic protonation of aliphatic sites [16]. Of course,
other polarization-transfer method such as Hartmann-Hahn cross
polarization [17] can also be used instead. The measurement of the
dipolar couplings is implemented as a dephasing period after the t;
time (see Fig. 1) where the heteronuclear dipolar coupling is recou-
pled by a suitable pulse sequence. Variations of this scheme and
more elaborate pulse schemes are possible. Measuring a series of
two-dimensional heteronuclear chemical-shift correlation spectra
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Fig. 1. Schematic drawing of the pulse sequences used for measuring heteronuclear
dipolar couplings.

as a function of the dephasing time 7, allows the determination
of the dipolar-coupling constants from the modulation of the
cross-peak intensities. In principle, it is also possible to determine
the dipolar couplings from the oscillation in a polarization-transfer
experiment, such as in CP experiments, rather than from a dephas-
ing experiment. One method that was used very early on is Lee-
Goldburg cross polarization (LG CP) [18,19] where the abundant
spins are spin locked along the magic angle to average out homo-
nuclear dipolar couplings [20]. This method has been used to mea-
sure C-H dipolar couplings in uniformly '>C- and !°N-labeled
ubiquitin [2-4] but it is well known that the averaging of the
homonuclear dipolar couplings is incomplete in such experiments
[21,22]. In addition, this approach suffers from rf-field miscalibra-
tion and inhomogeneities in the same manner as CP experiments
[23]. We will focus here only on experiments that are based on a
dephasing of in-phase S, coherence.

Several methods have been proposed to measure the magnitude
of one-bond dipolar couplings in proteins. One approach is the use
of the transverse MREV (T-MREV) pulse sequence [24] which also
leads to a partial averaging of the homonuclear dipolar coupling
while the heteronuclear dipolar couplings are retained with a scal-
ing factor. The T-MREV sequence has been used to measure N-H
and C-H dipolar couplings in fully protonated GB1 [1] and N-H
dipolar couplings in fully protonated huPrP23-144 [7]. Symme-
try-based pulse sequences [25] can also be used to selectively rein-
troduce the heteronuclear dipolar coupling while at the same time
suppressing the homonuclear dipolar coupling. The R18¥ sequence
[26] has been used to measure N-H couplings in fully protonated
thioredoxin [6] and the R18 sequence has been used to quantify
N-H dipolar couplings in the context of hydrogen bonding [27].

Because perdeuteration of proteins (and reintroducing some
protons) has been shown to have a number of advantages, most
importantly a high resolution in the 'H spectrum and the possibil-
ity for sensitive proton detection, experimental schemes for such

proteins have also been developed. Here the design can concen-
trate more on the compensation of systematic errors introduced
by non idealities in the experiment, because the suppression of
the homonuclear dipolar interaction is not any more the dominant
design requirement. A variation of the CP experiment, called
phase-inverted CP (CPPI) [23,28] was used to measure N-H dipolar
couplings in a highly-deuterated SH3 domain [5]. REDOR tech-
niques [29-31] are another attractive choice in such systems.
Using a shifted-time finite-pulse version of REDOR, N-H dipolar
couplings in highly-deuterated ubiquitin have been measured [9].
There are also measurements of N-C dipolar couplings using the
TEDOR [32] pulse sequence applied to fully protonated huPrP23-
144 [7]. Multiple-quantum correlation spectroscopy [33,34] has
also been used to measure C-C dipolar couplings [8].

The accuracy of the experimental measurement of dipolar cou-
plings is crucial, especially if motional amplitudes in different pro-
teins are to be compared, or if dipolar couplings are used in
combination with relaxation data in order to describe time scales
and amplitudes quantitatively. Therefore, we assess here the accu-
racy of different recoupling experiments by determining the mag-
nitude of systematic errors that arise from miscalibrations of the
radio-frequency amplitude, the influence of homonuclear dipolar
couplings, chemical-shift offsets and CSA parameters, and the com-
bined effect of miscalibrations of rf fields and homonuclear dipolar
couplings. We decided to investigate five different pulse schemes,
namely the CPPI scheme, the R18] and R18] pulse sequences, the
T-MREV sequence and the REDOR scheme using numerical
simulations.

This article is organized as follows: Section 2 provides a theoret-
ical description of the different recoupling schemes. It is intended
for the interested reader, but not an absolute necessity for the
reader mainly interested in choosing and implementing a recou-
pling experiment for practical use. Section 3 investigates the
robustness of the different pulse schemes using numerical simula-
tions. From these numerical simulations we conclude that the RE-
DOR scheme which can be used for a wide range of spinning
frequencies gives the lowest systematic errors for samples with
low proton density. For samples with dense proton coupling net-
works (as non-deuterated protein samples), the T-MREV sequence
leads to accurate results for slow to intermediate MAS frequencies.
In Section 4 we show experimental data of N-H dipolar-coupling
measurements with a REDOR experiment, measured on a highly
deuterated preparation of the protein ubiquitin.

2. Theory
2.1. REDOR experiments

For the analytical description of the REDOR experiment [29,30]
we consider a heteronuclear dipolar-coupled two-spin system in a
strong magnetic field with a rotating-frame Hamiltonian of

2
His(t) =2LS, Y et (M)
n=-2
with o) =1.d2(—0m)-e™ -dj () - 5. Here, § and y are the Eu-
ler angles describing the orientation of a crystallite in the rotor-
fixed frame, 0, is the magic angle, and the d,, (B) are the reduced
Wigner rotation-matrix elements [35]. The anisotropy parameter
of the dipolar-coupling tensor is given by

N AL
Os = 2471, =) (2)

The timing of a standard REDOR experiment with finite pulses is
shown in Fig. 2a with the pulse length given by 7p = £7, and o,/
w1 = ¢. The first-order average Hamiltonian (often also termed
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Fig. 2. Timing of (a) the standard REDOR pulse sequence and (b) the shifted REDOR
pulse sequence. Shown is only the first half of the REDOR recoupling train,
preceding the m pulse on the S spin. The sequence in (b) is applied in a mirror-
symmetric manner in the second half [30].

the zeroth-order average Hamiltonian)' for standard finite-pulse
REDOR experiment has been solved analytically [31] leading with
an alternation of the phases of subsequent m pulses during the
recoupling pulse train following the xy-4 scheme [40] to a Hamilto-
nian of the form

—dis cos (%) sin(2p) sin (y — %2
V27 1-¢?
In the limit of strong rf pulses ¢ — 0, we obtain the well known re-
sult for the REDOR experiment with & pulses, namely
— -0
7 %

IS \/jTC
The finite pulses lead to a scaling of the REDOR oscillation frequency
by

cos(mep/2)
K= 42
1-¢

We now consider a finite-pulse REDOR experiment where the
pulses in the center of each rotor period (at nt./2) are shifted to
the left by 15 = ¢1,/2 (see Fig. 2b) in the first half of the REDOR se-
quence and to the right in the second half of the REDOR sequence
[30]. A calculation similar to the finite-pulse REDOR experiment

[31] leads, with the phases following the xy-4 scheme, to a first-or-
der average Hamiltonian of

Y = JaLs, 3)

sin(2p) sin(y)2L,S, (4)

()

_ B}
7 _ S
B 4n4¢* —5¢2+1)

x [(¢>2 —1)sin’(1e) cos (1) sin’ (B) sin(2y — 1)

+2V2(4¢* —1)cos? (%) cos <n7¢) sin(2)sin (y —%¢>] 21,5,
(6)

This Hamiltonian contains contributions from the w{" and
wis? component of the dipolar coupling while only w" contrib-
utes in the standard REDOR experiment. In the limiting case of
& — 0 we obtain back the average Hamiltonian of Eq. (3) while in
the limit of ¢ -~ 1 we obtain #\ = 0. The Hamiltonian of the
shifted finite-pulse REDOR experiment contains a scaled effective
dipolar coupling with a scaling factor that can be adjusted by the
experimentalist through the choice of the pulse timing. Note, that
the scaling factor depends on the crystallite orientation and is not
uniform over a powder sample. In the limit of § pulses (¢ — 0),
Eq. (6) reduces to the well-known expression [30]

! In the past we have used a numbering of the average Hamiltonian starting from 0
as it was introduced by Haeberlen and Waugh [36,37]. Such a numbering leads to
differences between AHT and Floquet treatments [38] where comparable terms
appear in the Floquet treatment in order (n) while they appear in order (n — 1) in the
AHT expansion. We have, therefore, decided to follow the convention suggested by
Hohwy et al. [39] and start the numbering of the AHT expansion with 1.

Y = _4—25 [sinz(ns) sin® Bsin(27)
422 cos? (?) sin(2f) siny|2LS, (7)

A more general solution for an asymmetric-dipolar coupling
tensor can be found in the Supporting Information.

Given the fact, that the time evolution under the REDOR se-
quence can only be sampled at integer multiples of the cycle time
T¢ = 2Ty, such a scaling is a useful property that can be used to ob-
tain a better experimental sampling of the REDOR curve for large
dipolar couplings. This is an important feature for the measure-
ment of one-bond N-H or C-H couplings which are of the order
of 23 and 43 kHz, respectively. The scaling of the REDOR recoupling
is illustrated in Fig. 3 where the maximum dipolar splitting (i.e. the
maximum value of the prefactor in front of the 2LS, term in Eq. (6)
over the powder distribution) is shown as a function of the position
of the shifted pulse (expressed in &) for four different ratios of spin-
ning frequency to rf amplitude w./w; = ¢ (Fig. 3a). As predicted,
the width of the powder pattern is reduced with increasing values
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Fig. 3. Analytical calculation of REDOR characteristics and REDOR curves as a
function of the parameters ¢ = w;/w; and ¢ = 27/7,. (a) Plot of the maximum dipolar
splitting Aw}g"“)/é.s as a function of ¢ for three different values of ¢. The curve for ¢
= 0 represents the s-pulse limit. (b) REDOR curves AS/S, plotted as a function of td;s/
(2m) for ¢=0.3 and values of ¢=0, 0.3, 0.6, and 0.9. (c) Powder patterns

corresponding to the four REDOR dephasing curves in (b).
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of &. This can also be seen from a plot of the REDOR curves in Fig. 3b
where the REDOR oscillations become slower and the correspond-
ing powder patterns (Fig. 3c) narrower with increasing value of e.
The differences between the curves for different values of w,/

= ¢ are small (Fig. 3a) showing that the xy-4 scheme partially
eliminates the effects of finite pulses [31]. Since each rotor period
contains two 180° pulses, the rf-field requirement for the finite-
pulse REDOR experiment is @w; > w, (see Fig. 2) which makes it a
quite suitable experiment for fast MAS.

While homonuclear dipolar couplings vanish in the hard pulse
limit, they are partially recoupled in the finite-pulse REDOR exper-
iment. Analytical expressions for the first-order average Hamilto-
nian under the shifted finite-pulse REDOR experiment can be
found in Eq. (S5) of the Supplementary Information. With increas-
ing field strength, i.e., smaller values of ¢, the magnitude of the
first-order average Hamiltonian decreases. Therefore, it is advis-
able to use high rf fields in order to minimize the recoupling of
homonuclear dipolar couplings.

The dephasing in the REDOR experiment is simple and evolves
according to a powder average over cosine functions, cos(wt),
where o denotes the entire prefactor in front of the 2IL,S, spin-
operator term in the first-order average Hamiltonian of the REDOR
pulse sequence (Egs. (3), (6), or (7)). The REDOR experiment has
the added benefit (over the other pulse sequences shown in
Fig. 1) that a control experiment without recoupling can be imple-
mented by leaving out the refocusing pulses on the I spins (Fig. 1c).
This control experiment compensates the signal loss of the magne-
tization due to relaxation. Therefore, the REDOR curve AS/Sy can be
fitted with a single free parameter, the dipolar coupling J;s. Fur-
thermore, the REDOR pulse sequence is the only sequence of the
ones considered here that produces, to first-order average-Hamil-
tonian theory, an Ising-type Hamiltonian of the form =, ;2I;,S;,. In
the case of more than 2 spins, this Hamiltonian is not susceptible
to dipolar-truncation phenomena [33,41-43]. Note, that for the fi-
nite-pulse REDOR experiment the Hamiltonian has only such an Is-
ing-type form if the xy-4 [40] scheme is used [31]. The xy-4
scheme is a prerequisite for the robustness of the experiment
(see Fig. S1 in the Supplementary Material). Without the phase cy-
cle, the Hamiltonian has two terms of the form 2LS, and 2I,S,
which do not commute and can lead to dipolar truncation effects.

2.2. Phase-inverted cross-polarization experiment

The phase-inverted cross-polarization (CPPI) [28,23] experi-
ment uses a periodic inversion of the rf phase on both channels
with a simultaneous change of the Hartmann-Hahn side-band
matching condition under MAS from n = +1 to n = —1. This implies
a change of the rf-field amplitude by 2, on one of the channels
(Fig. 1c). Such an experiment can be viewed as a phase-alternating
irradiation (XiX) on the I spins with amplitude wq; and on the S
spins with amplitude w;s with a modulation frequency w, = 2n/
Tm. Superimposed on the phase-alternating irradiation, there is
an additional cw irradiation on the S spins with amplitude Awqs/
2 = w,. Such an experiment can be described by operator-based
Floquet theory [44] using three basic frequencies after an interac-
tion-frame transformation that eliminates the rf-field part of the
Hamiltonian

U(t) = exp (iﬂ[(t) 21&> exp (:7; Zl,;y>
X exp (—iﬁs(t) ;sz> exp <—iAC;15 tZsz>

p
xexp(

)

N\:!

where the time-dependent flip angles pi(t) and ps(t) lead to an inter-
action-frame transformation of the form

I (t) = L cos(B,(t)) + I, sin(B(t)) = i (1;((1},’? + Iya;;f)>eikwm[ (9)

k=—o0

and

Sx(£) = Sxcos(Bs()) + Sy sin(Bs(6)) = > (S« + Sya et

k=—00

(10)

respectively. The time-dependent interaction-frame Hamiltonian is
given by

Z Z Z }(ljnkl inw,. l’((!)m[el/ AU1s (11)

n=-2 k=—oo (=-2

Neglecting all isotropic J couplings and considering a Hamiltonian
that contains only isotropic chemical shifts, CSA tensors, and dipolar
couplings leads to Fourier coefficients that are given by

7(000) Z wld (alx Ty + a,y Idy>

7 (n00) Z wld (alx Iox + a,y Idy)

1
- Z wITI)@ {Idzlez -3 (Taxlex + Idyley):|

d<e

1
- Z wéz)sq {szsqz —3 (SpxSex + Spysqy)}

p<q

v S O (Uadex + Taley )b + laley + LTIy

d<e

7 (nk0) Z a)]d (a,x Iy + a,y Idy)

+ Z 5 wldle ((Idxlex + Layloy )bl + (Taeley + IderX)bly )

d<e

(k1) Zws,,lp p( (b © 4 ip ) *My(bﬁlgiib}(j;))
EPNCEACEY

A=) Z 205555, (bS) = ibg) ) (12)

where the af = aff) +ia}} and the by = b +ib{\) are the Fourier
coefficients of the exp(z/fs( )) and exp(2iBs(t)) terms. respectively,
as defined by Egs. (9) and (10). They can either be calculated
numerically or analytically using an infinite sum over Bessel func-
tions [45]. The amplitude of the rf field does not enter directly into
the interaction-frame transformation but indirectly through the
magnitude of the a(s" and b ® coefficients. Typically, the a ) coeffi-
cients are maximum for k(”“”‘) = wqs/wy While the bS coefﬁc1ents
are maximum for K™ = 2,5/, [45]. The same expressions hold
for the /¥ and b\"' coefficients. The b'}) coefficients describe com-
bined modulations by the irradiation on the I and S spins and are
defined as

uv - Z al

ky=—00

v (13)

where p, v are either x or y. Some of the aﬂ‘) and a\¥' Fourier coeffi-
cients are plotted in Fig. S2 of the Supporting Information as a
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function of k under the assumption that wq; =
Wy, =1.0and 1.2.

In the CPPI experiment, the conditions wi = wis=w; and
Awis =2, are fulfilled while the modulation frequency wy, is
arbitrary. This leads to the resonance condition

wss for values of w;/

Aw
o, + Tls =0 (14)
with ng =11 and, as a consequence of the parameters used in the
experiment, we find a* = a¥ and b = b{. The first-order effec-

tive Hamiltonian on the resonance condition is then given by

N = Z(10-1) 4 (=100

1 ( WSt
=—z (as wsp S +af s, Sp)
p

2
+ dz oS, [la(be) — ibg)) — Lo, (b — 3]
+ Z o) [Idx( + ibi‘y) — Iy (b;‘x’) + ib;(;’)} (15)

The expression of Eq. (15) can be simplified since the b° and b0 are
usually small or even zero for integer ratios of w; and Wm (see
Fig. S1 of the Supporting Information)

1

720 - (UEPN WSt

aY = 2;(% s, +af ol 5p>

[Id" x +Idylbyy] +a)51 5 [Idxb,((?() —Idyib}(,(;)]
(16)

Assuming in addition that b{;) = b{)’=0.5 and a{” = 0 which is ful-
filled for integer ratios of w; and wy, (see Fig. S1 of the Supporting
Information), we obtain

— i -

71 _ b (0 +)¢e- _ D+

H =50y § (wsp S, — g, Sp)
P

1
+§§(ws,ds 1++w5,ds+1d) (17)

which is in essence a rotary-resonance recoupling Hamiltonian
[46,47] for the CSA tensors and a zero-quantum recoupling Hamil-
tonian on the heteronuclear dipolar coupling. Note, that for non-
integer ratios of w; and wy, the Hamiltonian will be a mixed
zero-quantum and double-quantum Hamiltonian since bff();éb;?,) un-
der these conditions.

The phase-inverted CP experiment as implemented previously
[5] with the amplitude jump on the S spins leads to a simultaneous
dephasing of the S-spin magnetization under the heteronuclear
dipolar coupling and the S-spin CSA tensor. The evolution under
the full Hamiltonian of Eq. (17) cannot be calculated analytically
but neglecting the CSA tensor we obtain a dephasing of the S-spin
magnetization by a single heteronuclear dipolar coupling de-
scribed by cos? S ’a)(s,+1 § Moving the amplitude jump to the pas-
sive spins would have the advantage that the dephasing by the CSA
tensor will only enter as a second-order effect. The spin-locking
properties for such an experiment, however, are only good if the
rf-field amplitude is an integer multiple of the modulation fre-
quency (see also Fig. 9 below). This can be seen from Eq. (12) since
the non-resonant contribution to the effective Hamiltonian
(#1009 contains isotropic chemical-shift terms that are scaled
by a};” and aﬁf). These scaling factors are zero for integer ratios of
w1 and oy, Otherwise an additional oscillation under the scaled
isotropic chemical shift can be observed which makes data evalu-
ation difficult. Due to the fact that the rf-field amplitude on one of

the spins has to be changed by 2w, the phase-inverted CP experi-
ment is only applicable for slow to intermediate MAS frequencies.

2.3. Symmetry-based RN, sequences

Symmetry-based pulse sequences [25,48-50] can be used to
generate effective Hamiltonians by selecting terms of the full
spin-system Hamiltonian that have certain properties under rota-
tions in spin space and real space. Such sequences can be analyzed
using bimodal Floquet theory [44,51]. The interaction-frame trans-
formation for the RN} sequence on the I spins is given by

U = Texp <i / w1 Z cos(p(t))ex + sin(p(t)) ey)dt> (18)
Jo

where T is the Dyson time-ordering operator [52] which ensures
the proper time ordering of non-commuting propagators in prod-
ucts. The interaction-frame Hamiltonian has two independent fre-
quencies and can be written as

2 00
t) = Z Z p (ko ginaxt gikomt (19)

n=-2 k=—oco

where the basic frequency oy, = 27/t depends on the cycle time
Tm = n7, of the RN}, sequence. The Fourier coefficients of the Hamil-
tonian are given by

HO {Zwllzld Le+ Y 0% 25, S, +Zws(o pz}ako

d<e p<q

1
+Za)ld Zals ls+ZwIdS 25pzza§de
s=-1

s=-1

A = {Z CU(S,;)Sq (3SpzSqz —

p<q

Sp-Sa)+ Y wg';)s,,z}ak‘o
p

1

(k) (d)
VBl Y T+ Yol Y dir
d<e s=-2 d s=—1
1
(n) k)(d
+ 0,28 Y ai T (20)
pd s=-1

where n # 0. Here we have used the spherical-tensor notation for
the I spins with

T{ = liz

M, =i <
2

and

rae — s (0,1

2,0 :\/—6[ dedez — (Iq - 1e)]
1

T(Zdﬂ = $§ [%Iez Jrldz[ﬂ (22)

1
TS = 5 [lale]

The Fourier coefﬁc1ents al ) of the interaction-frame transformation
of the Ti'Y and T\) operators are defined by

al,s(t) _ Z al(,’;) eikwmr (23)
k

The values of the a}? coefficients can be calculated numerically and
depend on the parameters of the RN, sequence. For an RN, pulse se-
quence the condition for non-zero values of the Fourier coefficients
al ) is given by

.S
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ko = 5 SV (24)
where z is an integer with the same parity as [, i.e., z is odd if | is odd
and z is even if | is even. Analytical expressions for the Fourier coef-
ficients a,(ﬁ“) can be found in Ref. [51] or they can be calculated
numerically by a Fourier transformation of the interaction-frame
trajectories (see Figs. S3 and S4 of the Supporting Information).

On the first-order resonance conditions with ngw; + kgwm, =0
the non-zero parts of the Fourier coefficients # (o) are recoupled.
Since w, = noy, for any RN, sequence, the resonant terms are given
by # (mo—mmo) with ng = +1 or +2. For recoupling of the heteronuclear
dipolar couplings, the R18; and R18] sequences have been pro-
posed [6,27,26] using a simple 180° pulse as the basic R element.
The rf-field requirement for the two pulse sequences is
w1 =4.5w, and 9w,, respectively, which makes them suitable for
slow to intermediate MAS frequencies. For fast MAS, a different se-
quence would be required with a lower ratio of rf-field amplitude
and spinning frequency.

For the R18; and R18] sequences, n =2 and 1. This implies that
only terms with non-vanishing Fourier coefficients a:‘_g with ko = £2
or 4 can be recoupled by the R18] sequence and terms with
ko=+1 or +2 can be recoupled by the R18] sequence. Only the
al"# terms for the R18; sequence and the al*?) terms for the
R18] fulfill this condition (see Figs. S3 and S4 in the Supplementary
Materlal) leading to first-order effective Hamiltonians of the form

D = 24 | Gp-244)

a4

N

Il
s
-

el w}jllg)

mM

(wlds 25pely + 0] 2851, (25)

=5 ; ( I + o I*)
+ LKl > (0l 28pl; + 0f25,15) (26)
V2 1Sy 22p2ld 145, 22p2ld

pd

respectively. The coefficients a| ] ~0.4253 and | ~ 0.4395
leading to a scaling factor of the R18] sequence of

K= \/i‘a({fi‘ ~0602 and for the RI18]
K= \/i‘a(l_’fi‘ ~ 0.622. In both cases, the I-spin CSA tensor is recou-

sequence  of

pled with the same efficiency. For a single heteronuclear dipolar
coupling, the dephasing of the S-spin magnetization is described
+2)|¢

by cos ( ‘wl

) while the recoupled I-spin CSA tensor enters only

indirectly. This corresponds to a scaling of the width of the powder
pattern (measured between the two singularities at g =90°) com-
pared to the static case by 0.301 and 0.311, respectively.

2.4. T-MREV-N sequences

The transverse MREV sequences (T-MREV-N) [24,53] are a class
of pulse sequences where the basic building block is a modified
version of the MREV-8 cycle [54,55] for homonuclear decoupling
which is then repeated N times within a rotor cycle and the phases
of all pulses are shifted by 2z/N (Fig. 4). This can be viewed as a
symmetry-based CN] sequence [25] where the basic C element is
the modified MREV-8 cycle.

y y X X X y y.
| l Tm II Tm II Tm II Tm
¢ ==(p = [(gE
7.IN N

Fig. 4. Basic building block of the T-MREV-N pulse succulence with indications for
the timing and phases of the pulses.

It is possible to calculate the first-order average Hamiltonian of
the T-MREV-N pulse sequence under MAS using finite pulses in or-
der to obtain the scaling factors of the heteronuclear dipolar cou-
plings. Using a notation similar to the one used in the finite-
pulse REDOR calculations with ¢ = w/w; leads to a length of the
90° pulses of T, =47, and to a length of the delays between the
pulses of T, = (55— —)r, This limits the range of ¢ to 0 < ¢ <5k
so that the delay 7y, is not vanishing. Assuming a high-field trun-
cated heteronuclear dipolar-coupling Hamiltonian of the form

2
His(t) =218, Y o et (27)

n=-2

we obtain for N > 3 a first-order average Hamiltonian of the form
#Y = (m I+ kol 1*)52 (28)

The analytical expressions for x have been calculated using Math-
ematica (Wolfram Research Inc., Champaign, IL, USA) as a function
of N. They are a function of the pulse length and the rf-field ampli-
tude. Fig. 5 shows a plot of x as a function of ¢ for N =4 to 8, which
are almost linear functions of ¢. The exact functional form is given

by
_ Z1¢p+22008 (B) +z35in (5)
- ('~ 1)

and numerical values for the parameters z; are given in Table 1. The
calculated scaling factors agree very well with powder patterns ob-
tained from full numerical simulations of the T-MREV-N sequence
using the GAMMA simulation package [56].

It is important to note that even in first-order AHT, the T-MREV-
N sequences are not perfect homonuclear decoupling sequences.
Starting from a homonuclear dipolar-coupling Hamiltonian of the
form

(29)
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Fig. 5. Scaling factors k for the T-MREV-N sequences as a function of the ratio ¢
= ¢ ws.
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Table 1
Numerical values for the parameters of the scaling factor x for the T-MREV-N
sequences.

Z Z Z3
4 —10.0547 + 0.8284i —2.0000 + 0.1648i 10.0547 — 0.8284i
5 —12.8537 +2.7195i —2.0358 +0.4307i 12.8537 — 2.7195i
6 —15.4169 +4.7195i —2.0297 +0.6213i 15.4169 — 4.7195i
7 —17.8291 + 6.7580i —2.0089 +0.7614i 17.8291 — 6.7580i
8 —20.1416 + 8.8090i —1.9838 + 0.8676i 20.1416 — 8.8090i
2
.y
Hu(t) = Rhly — (halax + Iylyy)) Y wjle™ (30)

n=-2
we find for the T-MREV-4 sequence even in the delta-pulse limit a
first-order Hamiltonian of the form

—m _ 3(vV2-1
7 — ( 2 )

m (™) 21yl ~ 2U1d) (31)

leading to a powder line with a width of approximately J;/10. For
finite pulses the magnitude of the scaling factor is changed and
additional two-spin terms appear but with much smaller coeffi-
cients. For the T-MREV-5 sequence one obtains in the delta-pulse
limit a more complicated first-order AHT of the form

A ~ (01274 Re(@ ) — 00414 - Im () ) 211y
+ 21y L)
+(0.0414-Re(™) +0.1274 - Im(}) ) 21,1y

+ 211x12x)
(32)

For finite pulses the scaling factors change and additional terms ap-
pear. T-MREV-N sequences with higher values of N are also not per-
fect homonuclear decoupling sequences even in first-order AHT and
assuming delta pulses.

The design of the pulse sequence limits the application to slow
MAS frequencies since the requirement for the rf-field amplitude is
@i > 2Nw,. Since N >3 is required for the T-MREV sequences
[24,53], spinning frequencies above 15-20 kHz require very strong
rf fields. Preferably, even lower spinning frequencies should be
used to obtain better scaling factors for the heteronuclear dipolar
couplings. For N=2 and N =3, the Hamiltonian has a different
form. For N=2, the T-MREV pulse sequence recouples only the
" component but is no longer y encoded while for
N=3,w" and wi? are both recoupled.

3. Numerical simulations

In order to compare the performance of the four different pulse
sequences shown in Fig. 1 numerical simulations were performed
using the software package GAMMA [56]. In the following, we will
focus primarily on '>N-"H spin pairs, but all conclusions can di-
rectly be transferred to other X-'H systems. It is the aim of these
simulations to provide a quantitative measure of the sensitivity
of the different pulse sequences to experimental imperfections
and to additional terms in the spin-system Hamiltonian which
have been neglected in the analytical treatment, e.g., CSA tensors
or additional “remote” proton spins. As a measure for such system-
atic effects, the deviation of the effective dipolar-coupling anisot-
ropy éfsff extracted from such simulations from the nominal value
of the dipolar coupling ;5 was used.

3.1. Computational parameters and methods

A set of test simulations was performed with different CSA
parameters, remote spins, and rf-field amplitude settings assuming
a fixed anisotropy of the !N-'H dipolar coupling &/
(27) = 19.5 kHz. This corresponds to an effective N-H bond length
of 1.077 A. The data evaluation was based on a set of ideal two-spin
simulations with fixed standard CSA parameters and ideal rf-field
amplitudes and pulse lengths, varying d;s/(27) in the range of 14
to 36 kHz in steps of 10 Hz. The latter simulations were used for fit-
ting the test simulations to extract the apparent value of the dipo-
lar-coupling anisotropy 5,esff from the test simulations.

Unless otherwise noted, the following standard parameters
were used in all simulations: 'H CSA ¢, =2 ppm, # =0, inclined
relative to the H-N internuclear vector at 10° N CSA
0,,=113 ppm, 1 = 0, inclined relative to the H-N internuclear vec-
tor at 20°, at a B field of 14.1 T corresponding to a proton Larmor
frequency of 600 MHz. This is a typical situation for a '>N CSA ten-
sor in a peptide. Powder averaging was implemented according to
the ZCW scheme [57] using 2500 or 10,000 powder points for the
two-spin and the three-spin simulations, respectively. The follow-
ing MAS und pulse settings were used for the T-MREV-N simula-
tions: MAS 9.47 kHz (7, = 105.6 us), corresponding to a 90° pulse
length of 2.2 pus using the T-MREV-4 scheme (w;=3Nw;). The
nominal ideal 'H rf-field amplitude is v; =113.636 kHz. In the
R18¥ (R1 8;) simulations the MAS frequency was 10 kHz (20 kHz),
corresponding to a 'H rf field of v; =90kHz in both cases. The
phase-inverted CP (CPPI) experiment was simulated at 20 kHz
MAS, employing the amplitude and phase alternations required
for jumping from the +1 to the —1 Hartmann-Hahn match every
10 ps, similar to previous measurements [5]. The rf-amplitude
jumps from v, =36 kHz to 76 kHz were employed either on the
'H spins (referred to as “jump H”) or on the '°N spins (“jump
N”), while the rf-field amplitude on the other channel was kept
constant at 56 kHz. In all REDOR simulations the 'H and >N 180°
pulses were 4 ps and 10 ps, respectively, corresponding to rf-field
amplitudes of v;=125kHz and 50 kHz. The REDOR experiment
was simulated at MAS frequencies of 20 and 50 kHz. The shift of
the pulses 75 was 20.5pus (¢=0.82) or 13.75pus (¢=0.55) at
20kHz and 5.5 pus at 50 kHz MAS (e=0.55). The choice of the
MAS frequencies was motivated by the following considerations:
in the case of REDOR, high MAS frequencies are readily accessible
without the need for very high rf fields, while MAS frequencies
above 10 to 15 kHz are inaccessible to T-MREV-N and R18], and
MAS frequencies above about 30 kHz are inaccessible to R183.
The CPPI experiment requires jumps of the rf amplitude of 2w,
which becomes also very challenging for MAS frequency above
30-40 kHz.

Extraction of the apparent dipolar-coupling 621 from the test
simulations was done using the data of the first 3 ms of the time
evolution under the recoupling sequences. For the REDOR experi-
ment, all recoupling curves were first translated into normalized
REDOR curves, by calculating AS/So. The apparent dipolar coupling
was then obtained from a fit of the ideal two-spin simulation to the
simulated data sets by finding the one with the lowest x? value.
Extraction of the apparent dipolar coupling 52 from the data of
the T-MREV-N and the R18, sequences was also performed using
time-domain data. However, two additional parameters were
needed, an offset and a scaling factor for the absolute intensity.
For each ideal two-spin simulation, these two parameters were
optimized individually and the ideal two-spin simulation with
the lowest y? value to the test simulations data was selected, lead-
ing to the apparent dipolar coupling 6. We have also repeated
this fitting procedure with a third fit parameter that describes an
exponential damping. The results in terms of the extracted 6f5ff
are identical, except for the case of rf field-distributions (see
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Table 2
Relative deviations of 53" from the real s obtained from fitting 3 ms of recoupling.

TMREV (%) R1 gg (%) R1 g? (%) REDOR 20 kHz (%) REDOR 50 kHz (%)

Scenario 1: half-gaussian of width 6% towards lower and 2% towards higher fields

2-spin +2.6 +2.8 +2.7 -0.2 -1.3

3-spin system 1 +2.7 +3.2 +2.9 <0.2 -0.5

3-spin system 2 +3.2 +3.3 +2.9 +1.2 +0.5

Scenario 2: half-gaussian of width 10% towards lower and 4% towards higher fields

2-spin +2.0 +3.3 +2.7 -0.2 -2.1

3-spin system 1 +2.1 +3.4 +3.0 +0.2 -13

3-spin system 2 +2.7 +3.5 +3.0 +1.3 -04

Table 2), where the three-parameter model was used. The apparent
dipolar couplings obtained from the time-domain data very closely
match the couplings obtained from analyzing the frequency-do-
main data of the T-MREV-N and R18, simulations. For the CPPI
experiment, a time-domain fit was not possible, because of a
low-frequency modulation of the magnetization due to the >N
CSA, which dominates the signal in the time domain (see
Fig. 6d). We, thus, obtained the apparent dipolar coupling 63" from
the CPPI test simulations by comparing the observed peak splitting
in the frequency domain with the splitting in ideal two-spin simu-
lations, equal to the procedure outlined in a recent study [5]. Again,
the Fourier transform of the data for the first 3 ms of the mixing
time were used for this analysis.

3.2. Sensitivity to amplitude missettings and inhomogeneities in the 1f
field

The simulations in Fig. 6 illustrate the sensitivity of the different
experimental approaches to missetting of the 'H rf-field amplitude.
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Fig. 6. The effect of 'H rf-field miscalibration on the recoupling behavior in the
different simulations, (a) T-MREV-N, (b) R15, (c) R15], (d) CPPI with alternation of
the 'H rf-field amplitude, and REDOR at (e) 20 kHz MAS with 7 =13.75 us and (f)
50 kHz MAS with 75 = 5.5 ps (i). Shown are simulations using the correct 'H rf-field
amplitude (black) as well as a 9% too low (green) and 9% too high (red) rf amplitude.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Time traces for all experiments at ideal 'H rf-field amplitudes
(black) are shown, as well as for amplitudes that are 9% too low
(green) and 9% too high (red). On a qualitative level, the four pulse
sequences show clear differences in the sensitivity to 'H rf-field
missettings. The T-MREV-N and the R18 sequences show larger
dipolar oscillation frequencies for too low rf-field amplitudes,
and smaller oscillation frequencies for too high rf-field amplitudes.
Furthermore, a significant zero-frequency offset (Fig. 6b) is ob-
served for the R18 sequence [6,27].

When considering the outcome of the CPPI-jumpH experiment
as a function of the 'H rf-field amplitude, it has to be realized that
there are two different 'H rf field strengths that have to be set to
match the n=+1 and —1 Hartmann-Hahn condition, respectively.
Accordingly, these two different rf fields can be set (and mis-set)
independently, resulting in a two-dimensional parameter space
to be investigated. In a recent study it was assumed that the two
if fields are mis-set by the same absolute amount [5]. In this case,
the experiment was reported to be rather robust to this amount of
rf field mis-setting. We have simulated different situations, where
the two 'H rf fields are mis-set by different absolute amounts. In all
cases we observe a pronounced dependence of the oscillation fre-
quency on the settings. In the following, we focus here on the sce-
nario where the two 'H rf fields are misset by the same relative
amount. This situation is relevant when considering the effects of
rf field inhomogeneity. In Fig. 6d we assumed that the relative mis-
setting is equal for the n = +1 and —1 Hartmann-Hahn match, once
both fields are 9% above the nominal field strength, and in one case
9% below. Interestingly, and in contrast to the T-MREV-N and R183
sequences, the apparent dipolar coupling is too high in both cases.
In fact, in all simulated cases with misset rf-field amplitudes we
find too fast oscillation frequencies. We also note that the CPPI-
jumpN experiment is largely insensitive to missetting of the 'H rf
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Fig. 7. Relative deviation of the fitted dipolar-coupling asymmetry (SfS" from the
value of 19.5 kHz entered into the simulation, as a function of the 'H rf-field
amplitude relative to the correspond